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Abstract 

Background The co‑administration of drugs known to interact greatly impacts morbidity, mortality, and health 
economics. This study aims to examine the drug–drug interaction (DDI) phenomenon with a large‑scale longitudinal 
analysis of age and gender differences found in drug administration data from three distinct healthcare systems.

Methods This study analyzes drug administrations from population‑wide electronic health records in Blumenau 
(Brazil; 133 K individuals), Catalonia (Spain; 5.5 M individuals), and Indianapolis (USA; 264 K individuals). The stratified 
prevalences of DDI for multiple severity levels per patient gender and age at the time of administration are computed, 
and null models are used to estimate the expected impact of polypharmacy on DDI prevalence. Finally, to study 
actionable strategies to reduce DDI prevalence, alternative polypharmacy regimens using drugs with fewer known 
interactions are simulated.

Results A large prevalence of co‑administration of drugs known to interact is found in all populations, affecting 
12.51%, 12.12%, and 10.06% of individuals in Blumenau, Indianapolis, and Catalonia, respectively. Despite very differ‑
ent healthcare systems and drug availability, the increasing prevalence of DDI as patients age is very similar across all 
three populations and is not explained solely by higher co‑administration rates in the elderly. In general, the preva‑
lence of DDI is significantly higher in women — with the exception of men over 50 years old in Indianapolis. Finally, 
we show that using proton pump inhibitor alternatives to omeprazole (the drug involved in more co‑administrations 
in Catalonia and Blumenau), the proportion of patients that are administered known DDI can be reduced by up to 
21% in both Blumenau and Catalonia and 2% in Indianapolis.
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Conclusions DDI administration has a high incidence in society, regardless of geographic, population, and health‑
care management differences. Although DDI prevalence increases with age, our analysis points to a complex 
phenomenon that is much more prevalent than expected, suggesting comorbidities as key drivers of the increase. 
Furthermore, the gender differences observed in most age groups across populations are concerning in regard 
to gender equity in healthcare. Finally, our study exemplifies how electronic health records’ analysis can lead to action‑
able interventions that significantly reduce the administration of known DDI and its associated human and economic 
costs.

Keywords Drug–drug interactions, Polypharmacy, Multimorbidity, Electronic health records

Background
Adverse drug reactions (ADR) are noxious or unintended 
effects related to drug administration. ADRs are a major 
public health problem due to their impact on morbidity, 
mortality, and health economics [1, 2]. The co-admin-
istration of drugs may cause ADRs from a drug–drug 
interaction (DDI), defined as the effect one drug has on 
another at the pharmacokinetic or pharmacodynamic 
level. ADRs have been associated with 4.2 to 8.4% of all 
hospital admissions [2, 3], and of these, about 51% are 
related to DDIs [2], while other studies estimate a median 
DDI prevalence rate of hospital admissions around 1% 
to almost 2% [4, 5]. These numbers increase with poly-
pharmacy, which has been described to have doubled 
from 1995 to 2010, also increasing the percentage of 
individuals taking DDIs from 5.8 to 13.1% [6]. The risk 
of ADR-related hospital admission goes up from five-
fold for patients treated with more than three drugs to 
ninefold for those treated with more than 10 drugs [2]. 
As the population ages, the risk of suffering from two 
or more chronic conditions at the same time (known as 
multimorbidity) increases. This increase is different for 
women and men, both in terms of prevalence and the 
specific diseases that co-occur [7, 8]. As a consequence, 
the instances of polypharmacy and the prevalence of 
DDI also increase [9, 10], reaching a prevalence of 46% 
in the elderly, where 10% of them take severe interactions 
[11]. Regarding the differences in the prevalence of DDI 
according to age, a higher prevalence has been described 
in men during childhood [12], followed by a higher prev-
alence in adult women under 80 years of age and a higher 
prevalence in men over 80 [13]. Potentially, this rise 
occurs differently due to differences in the co-occurrence 
of diseases between the two genders [10, 14–16].

Factors in addition to age and gender, such as errors 
and lack of information in ambulatory care [17, 18] and 
the number of physicians prescribing drugs [19], are also 
known to increase the risk of DDIs. Often, physicians are 
unaware of the complete list of the drugs their patients 
are taking [17]. To counter this, computerized health 
information systems (HIS) such as electronic health 
records (EHR), drug interaction software, and decision 

support systems have been developed to screen for DDIs 
proactively and alert physicians and pharmacists [20] 
even though reports of preventable ADR-related hos-
pital admissions vary widely, from 24 to 52% [21, 22] to 
77 to 92% of all ADR-related hospital admissions [2, 23], 
HIS attempt to lower these rates. However, HIS alone 
are insufficient to prevent prescription errors, as phy-
sicians may dismiss alerts [24] as they lack context and 
clinical relevance. Indeed, 55 to 98% of the DDI alerts 
are overridden [25]. To solve the problem, algorithms 
that take into consideration patients’ context from EHR 
have been developed, reducing the number of alerts by 
more than 50% [26]. Together, these distinct factors paint 
a picture of a complex DDI phenomenon with worry-
ing direct consequences for patients and health systems. 
For instance, our previous analysis revealed that DDIs 
likely account for a significant financial burden to pub-
lic health, reaching 2 dollars per capita in a city in Bra-
zil during 18 months—extrapolated to an expenditure of 
$565 M for the country in the same period [10].

Despite the problem’s relevance, most studies have 
focused on specific populations with limited sample 
sizes. In addition, most of these studies focus on the anal-
ysis of narrow age ranges—primarily on patients over 65 
or pediatric patients—making it difficult to understand 
the alterations that occur throughout life. Furthermore, 
each study follows different methodological procedures, 
highlighting the need for joint analyses of different pop-
ulations. To better untangle the factors involved in the 
global DDI phenomenon, we analyze administration pat-
terns retrieved from EHR from three large populations 
with distinct public and private healthcare systems: Blu-
menau (Brazil; pop. 338,876), Catalonia (Spain; pop. 7.6 
million), and Indianapolis (USA; pop. 876,682). We study 
demographic variables, such as age and gender, as well as 
drugs involved in DDIs in all three populations in detail. 
In addition, we evaluate the role of polypharmacy and co-
administration by building a statistical null model that 
shuffles drug labels while accounting for cohort-specific 
drug availability. Finally, we demonstrate the population-
level impact of individual DDIs by simulating the admin-
istration of drug alternatives to omeprazole, a commonly 
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prescribed proton pump inhibitor with several known 
and avoidable interactions.

Methods
Data—Blumenau
Blumenau is a city in Brazil. Drugs reported in the Pronto 
HIS are available via medical prescription only, free of 
charge, and administered to citizens of Blumenau. Via 
Pronto, doctors prescribe medications by selecting drugs 
and dosages, and pharmacists dispense them by select-
ing quantity. This allows us to estimate the length of drug 
administration in days. We note that patients are not 
required to retrieve drugs from the public system. They 
can buy prescribed medications from private pharma-
cies at their own expense without such transactions being 
recorded in Pronto. Drug names originally in Portuguese 
have been translated to English, disambiguated, and 
matched to their IDs in DrugBank, an open-source drug 
database that contains DDI information. Medications 
with multiple drug compounds have been split into their 
constituent drugs. Administered substances not matched 
in DrugBank were discarded. These commercial EHRs 
contain 18  months (Jan 2014–Jun 2015) of anonymized 
drug administration and patient demographics retrieved 
from Pronto. It is the same data used in Correia et al. [10] 
except for the removal of ophthalmological drugs, topical 
drugs, and vaccines from the analysis. In total, we analyze 
140 unique DrugBank IDs dispensed to 133,047 patients. 
The study was approved by Indiana University’s Institu-
tional Review Board.

Data—Catalonia
Catalonia is an autonomous community of Spain. 
The data includes 11  years (Jan 2008–Dec 2018) of 
anonymized drug billing data, disease diagnoses (Inter-
national Code of Diseases, 10th version (ICD-10)), and 
patient demographics provided by the Catalan Health 
Institute (CHI), and extracted from the SIDIAP (Infor-
mation System for Research in Primary Care). The CHI 
manages primary healthcare teams that serve 74% of the 
Catalan population. All the CHI care professionals have 
used the same computerized clinical history program 
(e-CAP) in all visits (medical and nursing) since 2005 to 
register the mentioned demographic information, pre-
scriptions, disease diagnoses, and laboratory tests [27]. 
The data was thus gathered for administrative purposes. 
Drugs are identified by their Anatomical Therapeutic 
Chemical (ATC) classification, which contains five levels 
of detail. We use the finest detail level—chemical sub-
stance—and remove topical drugs. For comparison, we 
map ATC codes to DrugBank IDs. Importantly, we note 
that (a) a drug can map to more than one ATC code when 
it has different routes of administration or therapeutic 

uses and (b) some ATC codes represent combined drugs. 
For simplicity, we aggregate all ATC code billing that 
matches a DrugBank ID and split combined drugs into 
their constituent drugs. Drug billing is given at a monthly 
resolution. Only patients born before January 2007 were 
included in the study. In total, we analyzed 814 unique 
DrugBank IDs administered to 5,555,924 patients. The 
study was approved by the Jordi Gol University Insti-
tute for Research Primary Healthcare ethics committee. 
This manuscript has not been prepared in collaboration 
with this registry(s) and therefore does not necessarily 
reflect their opinions or points of view. The quality and 
accuracy are the sole responsibility of the author of the 
manuscript.

Data—Indianapolis
Indianapolis is a city in the USA. Two years (Jan 2017–
Dec 2018) of commercial EHR data were purchased 
from the Regenstrief Institute. This nonprofit organiza-
tion provides research access to the Indiana Network for 
Patient Care. This health information exchange system 
contains 13 billion data elements from more than 100 
hospital systems and thousands of providers across the 
state, with most of the data being from the city of Indi-
anapolis. The data we obtained under an agreement con-
tains anonymized disease diagnoses (ICD-10), patient 
demographics, drug quantity, and treatment duration for 
all three care levels. Unlike the other populations, drugs 
in this dataset could have been administered as pre-
scribed by primary care physicians or in a hospital set-
ting. Treatment duration allows us to estimate the length 
of administration in days. Similarly to the Blumenau data, 
we disambiguate individual medication names, match 
them to DrugBank IDs, and split medications with mul-
tiple drug compounds into their constituent drugs. After 
removing ophthalmological drugs, topical drugs, and 
vaccines, we analyzed 1228 unique DrugBank IDs dis-
pensed to 264,607 patients. The study was approved by 
Indiana University’s Institutional Review Board.

Drug–drug interactions
To ensure all DDIs found from the earliest dispensa-
tion dates in our study to the most recent, we use the 
2011 version of DrugBank as our drug interaction ref-
erence. Since using different time windows may affect 
the prevalence detected (a more extended study period 
increases the probability of detecting drug co-admin-
istrations and DDI), we have analyzed this prevalence 
using the same time window (18  months, the smallest 
available for Blumenau) and the complete study peri-
ods (2 years for Indianapolis and 11 years for Catalonia). 
Following the notation proposed in Correia et  al. [10], 
we denote patients by u ∈ U, and drugs by i,j ∈ D, where 
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Ui ∈ U represents the subset of patients dispensed drug 
i, and Du ⊆ D is the subset of drugs dispensed to patient 
u. Since patients can be administered a drug i multiple 
times during the study period, we denote the set of dis-
tinct administration intervals ai,u

n (in days or months) 
of drug i to patient u as Au

i ≡ {ai,u} . The total number 
of administrations and time units a patient u is adminis-
tered a drug i are denoted by αu

i = |Au
i | and �ui = ai,u . 

For Blumenau and Indianapolis, we are able to compute 
drug administration length in days. For Catalonia, how-
ever, we only have monthly drug billing data; therefore, 
in this case, αu

i = �
u
i  denotes the number of months drug 

i was administered to patient u. We assume dispensed 
drugs were administered for the entire prescribed length. 
Similarly, the number of distinct co-administration peri-
ods of two drugs (i and j) to patient u and the length of 
co-administration are denoted by αu

i,j and �ui,j , respec-
tively (see Fig.  1). For each observed DDI, we manually 
retrieve a severity score (major, moderate, and minor) 
from drugs.com [28], a website containing drug informa-
tion, including DDI descriptions. From these values, we 
compute other quantities and sets per patient u, drug i, 
or drug pair (i,j).

To characterize the conditional likelihood of a drug 
pair (i,j) in the population ( γ ψ

i,j  ), we divided the number 
of patients who administered the drug pair concomi-
tantly, |Uψ

i,j | , by the number of patients who administered 
one of the drugs in the pair, to obtain the probability that 
patients who administered drug i also co-administered 
drug pair (i,j). Values of γ ψ

i,j  closer to 1 indicate that drug j 
is usually co-administered with drug i in the population, 
or vice-versa for γ ψ

j,i  , as this measure is not symmetrical 
(γ

ψ
i,j  = γ

ψ
j,i ).

Since γ ψ
i,j  does not differentiate if drugs i and j 

are concomitantly administered for a short or long 
period of time, and we assume that the length of DDI 

administration is relevant for ADRs, we also charac-
terize the length of co-administration of drug pairs to 
a patient u by calculating the strength of co-adminis-
tration (τui,j ). The strength is calculated by dividing the 
duration of the co-administration by the duration of 
separate administration of the drugs (Additional file 1: 
Supplementary Material), where τui,j ∈ [0, 1] . This meas-
ure of normalized co-administration length per patient 
differentiates between drug pairs with complete tem-
poral overlap, (τui,j → 1) , and with a small temporal 
overlap (τui,j → 0) . Its mean value for the cohort of 
patients who administered drug pair (i,j) concomi-
tantly yields a measure of strength of co-administration 
of the pair in the population (Additional file  1: sup-
plementary material [29–31]). This proximity measure 
defines a weighted, undirected graph Tψ [10] on set D 
with edges, τψi,j ∈ [0, 1] , that relate drugs in the patient 
population according to the strength of co-adminis-
tration (as inferred by normalized co-administration 
length).

Co-administrations of interacting drugs can be rep-
resented as a graph ( Tφ ). Graph Tφ synthesizes the 
multivariate DDI phenomenon in a given population 
as a network. To test the significance of the observed 
DDIs in the population, we calculate Fisher’s exact tests 
on the number of patients affected by each DDI, |Uφ

i,j| , 
and the Bonferroni adjusted p-value based on the total 
number of DDI found in each population. Interacting 
drug pairs with a false discovery rate (FDR) ≤ 0.05 are 
considered significant and further analyzed.

For each population, we calculate the prevalence of 
co-administration (PC) as the number of patients who 
co-administered at least two drugs divided by the total 
number of patients. Similarly, we calculate the preva-
lence of interaction (PI) as the proportion of patients in 
the population who are administered at least one DDI.

Fig. 1 Diagram of co‑administration and interaction computation for Catalonia, Blumenau, and Indianapolis. Two hypothetical patient‑drug 
dispensing timelines with three drugs (i, j, and k) are represented. In Catalonia (left), two drugs (i,j) are assumed to be co‑administered if they were 
dispensed and billed during the same month. In Blumenau and Indianapolis (right), two drugs are assumed to be co‑administered if they were 
dispensed for an administration period with an overlap of at least 1 day. Drug administration lengths (in days for Blumenau and Indianapolis, 
and months for Catalonia) are shown for each dispensation. The three possible pairwise comparisons (i,j), (i,k), and (j,k) between the dispensed drugs 
are shown with their co‑administration overlap marked with backgrounds in either orange (not known DDI) or red (known DDI). Note: medications 
dispensed together are not necessarily taken together, they may be distributed throughout the day to avoid certain interactions
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Gender prevalence
The relative risk of co-administration (RRC ) for women 
is computed as the prevalence of co-administration in 
women divided by the prevalence of co-administration 
in men. The relative risk for men is calculated inversely. 
Similarly, we also compute the relative risk of inter-
action (RRI) for women as the prevalence of DDI in 
women divided by the prevalence of DDI in men (and 
inversely for women). Additionally, Fisher’s exact tests 
are used to calculate the significance of the various 
measures.

Age prevalence
To evaluate the effect of patient age on the DDI phe-
nomenon, we bin patients into 5-year age groups (or age 
cohorts) to compute an age-dependent prevalence of 
co-administration and DDI. In other words, the preva-
lence of co-administration of drugs in each age range is 
calculated as the percentage of patients in that age range 
who are co-administered drugs. The prevalence of co-
administration of drugs in an age range is calculated as 
the percentage of patients in that age range who are co-
administered drugs. Similarly, the prevalence of interac-
tions in each age group is calculated as the percentage of 
patients exposed to DDI in the corresponding age group. 
Both calculations are repeated separately for women and 
men. This allows us to compute relative risks constrained 
by age ranges, gender, and drug pairs. Note that due to 
the temporal nature of our study, patient age is cal-
culated based on their date of birth and the date of the 
drug event. This means that individual patients may be 
accounted for in multiple independent age ranges.

Drug–drug interaction network
To synthesize, depict, and analyze the DDI phenomenon 
captured by the EHR data, we build a DDI network for 
each population where nodes represent drugs and edges 
denote an observed and significant drug interaction in 
the population (Fisher’s exact test, FDR ≤ 0.05). Each 
population network is defined by graph Tφ , further 
refined such that edge width is proportional to the 
strength of DDI, while edge color represents the gender-
specific relative risk for women in darker red and men in 
darker blue. Further, node size denotes the probability of 
patients who administered drug i to be exposed to a DDI 
associated with that drug P

(

U
φ
i

)

 and is computed as the 
number of patients exposed to a DDI involving drug i 
divided by the number of patients taking drug i. An inter-
active application allowing users to filter results and 
explore the associated network is available at http:// disea 
se- perce ption. bsc. es/ ddint eract/.

Null model
The null model captures the expected increase in DDI 
prevalence with age, given observed polypharmacy 
and patient demographics within each age group. We 
assume a random administration of drugs to patients 
in a specific age group, therefore maintaining the same 
number of unique drugs dispensed and co-administered 
for each randomly drawn patient. Specifically, we ran-
domly draw patients from each age group. Then, for 
each patient, we randomly “dispense” drugs drawn from 
a set of drugs observed to be dispensed to patients in 
the same age group. In other words, in the null model, 
patients “administer” the same number of drugs as in the 
observed real population, but the drugs are randomly 
selected from the set of drugs observed to be prescribed 
for that age group. The expected prevalence of DDIs is 
then calculated for each age group, as was done with the 
observed data. Then, odds ratios are calculated to investi-
gate the prevalence disparity between the actual data and 
the null model by Fisher’s exact tests.

Furthermore, the null model also uses the same num-
ber of “co-administered” drug pairs (i,j) as observed in 
the real data, with the co-administered drugs j also drawn 
randomly from the set of “administered” drugs to user u 
in the null model. As in the original analysis, these ran-
dom drug pairs are subsequently checked for DDI status 
in DrugBank. We repeat this random sampling process 
100 times and compute all derived prevalence measures, 
as done with the original data.

Removal of omeprazole‑associated interactions
Since omeprazole is known to be over-prescribed and 
has one of the largest numbers of interactions observed 
in our study (see Additional file 1: Table S1 and Table S2), 
we simulate the replacement of omeprazole with alter-
native PPI in observed DDI cases. We use the ATC drug 
classification system that describes chemical subgroups 
containing drugs that could, in principle, be interchanged 
for treating the same disease to identify alternatives. 
Thus, as proof of concept, we focus on the PPI subgroup: 
omeprazole, pantoprazole, esomeprazole, lansoprazole, 
and rabeprazole. We then replace, in each situation, 
omeprazole with the alternative that avoids interactions 
with other drugs and recalculate the previously described 
prevalence measures.

Results
Population comparison
In order to best compare the three populations, we first 
analyze the initial 18 months (the smallest temporal win-
dow available, for Blumenau) of administrations in each 
population. This is necessary as longer study periods 

http://disease-perception.bsc.es/ddinteract/
http://disease-perception.bsc.es/ddinteract/
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increase the chances of observing co-administrations and 
DDIs and could bias our conclusions. We find that 140, 
814, and 1228 unique drugs were dispensed respectively 
in Blumenau, Catalonia, and Indianapolis, with 106 drugs 
common to all three populations (Additional file  1: Fig. 
S1A). Considering the complete set of drugs administered 
in each population, they present a very similar prevalence 
of co-administration (PC) with the largest for Blumenau 
(76.99%), followed by Catalonia (75.78%) and Indian-
apolis (74.16%). This prevalence increases to 89.83% for 
Catalonia and 75.53% for Indianapolis when we analyze 
all available data (11 and 2 years, respectively; see Addi-
tional file 1: Table S3). The three populations also observe 
a similar prevalence of drug interaction (PI), with the 
largest again for Blumenau (12.51%), but closely followed 
by Indianapolis (12.12%) and then Catalonia (10.06%). 
The prevalence of co-administration (Additional file  1: 
Table  S4) and DDI (Additional file  1: Table  S5) are sig-
nificantly higher in Blumenau compared to Catalonia and 
Indianapolis. Interestingly, while the prevalence of overall 
drug co-administration is significantly lower in Indianap-
olis compared to Catalonia (OR = 0.979), DDI prevalence 
is higher for Indianapolis (OR = 1.206). The DDI preva-
lence increases to 20.36% for Catalonia and 13.04% for 
Indianapolis when we analyze all available data (11 and 
2 years, respectively; see Additional file 1: Table S3). Fur-
ther leveraging all available data we show that the DDI 
phenomenon is more similar between Catalonia and Blu-
menau (0.52, Spearman correlation, see Additional file 1: 
Fig. S1C), in comparison to Indianapolis and either Cata-
lonia (0.3) or Blumenau (0.27).

Given the common set of 106 drugs, we observe 149 
known DDI pairs co-administered in all three popula-
tions (Additional file 1: Fig. S1B). As shown in Additional 
file  1: Table  S6, digoxin is the drug most often admin-
istered to patients in conjunction with its interacting 
drugs in Blumenau and Indianapolis (Additional file  1: 
Table  S6). For instance, in the three populations, from 

all patients who were administered digoxin, 47–60% of 
them also co-administered furosemide. Conversely, for 
all patients who were administered furosemide, only 
4–12% also co-administered digoxin. This DDI also has 
one of the largest observed strength of drug interaction 
(Additional file 1: Table S6), which shows that it tends to 
be administered for long periods of time, increasing the 
risk of hospitalization due to digoxin intoxication [30].

In addition, 10 out of the 12 shared DDI (Additional 
file  1: Table  S6) are related to cardiovascular disorders. 
Only two pairs make up the exception: valproic acid–car-
bamazepine and haloperidol–lithium cation. The former 
are anticonvulsants usually prescribed to treat seizure 
and bipolar disorders and given in combination to boost 
mood stabilization when monotherapy using either drug 
fails [32]. The latter are antipsychotic drugs used to treat 
schizophrenia and bipolar disorder and combined to pro-
vide modest, statistically significant benefits in the treat-
ment of schizoaffective disorder [33]. Even if both drugs 
are not frequently given together, our results denote a 
stronger association of Lithium cation with haloperidol 
rather than the other way around, potentially due to the 
smaller effectiveness of lithium alone compared with 
other neuroleptics.

Finally, we find that half of the shared DDIs pose major 
health risks, such as hyperkalemia and kidney failure 
(spironolactone–losartan), increased risk of bleeding 
(warfarin–amiodarone), and excess mortality (digoxin–
amiodarone) [29]. Indeed, the digoxin-amiodarone inter-
action is among the DDIs most frequently associated 
with hospital admissions and visits [4].

Gender prevalence comparison
We observe only a slightly higher but significant relative 
risk of co-administration for women in the three popula-
tions: Blumenau (RRC  = 1.07), Indianapolis (RRC  = 1.06), 
Catalonia (RRC = 1.05) (see Table  1). This relative risk 
increases substantially when focused on interacting 

Table 1 Relative risk for women (RRW ) of drug co‑administration (RRC ) and interactions (RRI); the latter is also computed for types 
of interactions as per drugs.com (minor, moderate, and major). The percentage of patients of each gender (M, man; W, woman) for 
each case is also shown. Values shown for all three populations during the first 18 months of the study. Asterisks denote statistically 
significant differences based on Fisher’s exact test results

Blumenau Catalonia Indianapolis

RRW % W, M RRW % W, M RRW % W, M

Co‑administration (RRC W) 1.07* (79.08%, 74.06%) 1.05* (77.39%, 73.88%) 1.06* (77.88%, 71.82%)

Interaction  (RRIW) 1.54* (14.64%, 9.49%) 1.25* (11.08%, 8.84%) 1.12* (12.69%, 11.36%)

Minor interaction 0.81* (0.36%, 0.44%) 1.27* (0.26%, 0.2%) 1.02 (1.13%, 1.1%)

Moderate interaction 1.59* (11.3%, 7.1%) 1.4* (8.31%, 5.93%) 1.12* (10.67%, 9.49%)

Major interaction 1.53* (6.25%, 4.07%) 1.08* (3.17%, 2.95%) 1.02 (4.87%, 4.76%)
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drugs, especially in Blumenau (RRI = 1.54), but is also 
high in Catalonia (RRI = 1.25) and present in Indianapo-
lis (RRI = 1.12). Drug combinations that cause moderate 
interactions, which should be used only under special 
circumstances because of their clinically significant out-
comes, are the most co-administered in all three popu-
lations and drive the differences between genders (see 
Table 1).

Age prevalence comparison
To analyze the effect of patient aging on the prevalence 
of drug co-administration and DDIs, we divide patients 
into age intervals of 5  years, based on their age at the 
time of administration (see the “Methods” section). As 
a well-known polypharmacy phenomenon, the preva-
lence of co-administration increases with age in all three 
populations as depicted in Fig. 2a; Additional file 1: Fig. 
S2 depicts the proportions of patients per number of 
drugs simultaneously co-administered. It is noteworthy 
that there is a drop in PC in the 10–14 age range for all 
three populations. Patients in the 15–59-year-old range 
in Catalonia have the lowest PC, although the largest 
PC is also observed in Catalonia for patients older than 
59. Conversely, it is in Indianapolis that the largest PC is 
observed for 20–59-year-old patients.

The prevalence of a DDI increases with age from less 
than 0.2% of patients in the 0–4  year range, to up to 
33.6% of patients over 90 years old (see Additional file 1: 
Fig. 2b). After the age of 75, PI is at least 20% for all three 
populations, and over 32% for Blumenau. Interestingly, 
all three populations display monotonically increasing 
PI with age (except for the oldest two age groups in Blu-
menau), despite their widely different cultures, available 
medications, and healthcare systems. Despite this, there 
are some noteworthy differences among the three popu-
lations as well. For instance, Indianapolis has the high-
est PI in patients age 0–39 as well as those older than 
85. Blumenau, on the other hand, has the highest PI for 
patients age 40–84, being Catalonia the one with the low-
est PI across all age groups, even though its patients age 
60–90 have the highest PC (compare Fig. 2a, b).

Our previous study [10] indicated that regression 
models do not explain well the relationship between 
co-administrations and interactions, even when includ-
ing all variables available in data as co-variates and for 
arbitrary regression complexity (also no evidence of 
a nonlinear relationship between co-administrations 
and interactions). Therefore, we build a statistical null 
model, marked in Fig.  2c–e with asterisks, which yields 
the expected DDI co-administration for each age range if 
patients were prescribed (age-specific) drugs at random, 

Fig. 2 Prevalence of co‑administration and interaction by age during the first 18 months of the studies. Green, red, and blue lines denote 
measurements for Blumenau, Catalonia, and Indianapolis, respectively. a Prevalence of co‑administration of drugs. b Prevalence of co‑administration 
of drugs known to interact. c–e Prevalence of interactions against the respective null model in c Blumenau, d Catalonia, and e Indianapolis. Circles 
denote the values obtained with the real data, while the asterisks denote the values obtained using the null model. The associated relative risk 
is shown above the points. Asterisks denote significant differences (Fisher’s exact test)
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to evaluate what proportion of the observed increasing 
PI with age in all three populations (Fig. 2b) is explained 
by the also increasing PC. Random prescription of drugs 
is of course oblivious to know DDI information, so one 
would expect actual prescription—given available infor-
mation about DDI—to result in lower prevalence than 
the null model. Indeed, this is observed for younger age 
groups, as the actual PI is lower than that of the null 
model with random drug administration. Thus, younger 
patients present a lower-than-random prevalence of 
DDIs for their rate of drug co-administration. However, 
and much to our surprise, for patients over 20  years of 
age in Catalonia and over 40  years of age in Blumenau 
and Indianapolis, the actual PI significantly surpasses 
what would be expected by chance: a worse-than-ran-
dom chance of administering DDIs. This means that the 
higher prevalence of drug interactions faced by older age 
groups cannot be explained solely by increasing polyp-
harmacy, pointing to comorbidity relationships as possi-
bly responsible for this higher-than-expected prevalence. 

Indeed, previous studies have highlighted that the main 
risk factors for adverse drug events are multimorbidity 
and polypharmacy [34].

Gender prevalence by age comparison
To study the role of gender in the observed age-associ-
ated prevalence of co-administration and DDI during the 
first 18 months of data in all three populations, we also 
analyze men and women separately. Figure  3a–c shows 
that women consistently have a higher prevalence of drug 
co-administration throughout their lifetime in all three 
populations, when compared to men. Nonetheless, this 
relative risk is typically small, being significant in almost 
all age ranges in Catalonia and only in specific age ranges 
in the cases of Indianapolis and Blumenau (15–29 years 
old). Overall, in Catalonia, we observe the smallest RRC  
across all ages, with greater gender imbalance in co-
administration observed in Blumenau and Indianapo-
lis showing across most age groups in the former, and 

Fig. 3 a–c Prevalence of drug co‑administrations and (d‑f ) interactions by age and gender for Blumenau, Catalonia, and Indianapolis in the first 
18 months of administration. Red and blue colors denote the prevalence in women and men, respectively. Relative risks of co‑administration 
and interaction for women per age group are displayed above the points. Asterisks denote significant differences (Fisher’s exact test)
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greater imbalance for women only in age group 15–44 in 
the latter.

The cross-population comparison of the prevalence of 
gender-related drug interaction across age groups reveals 
some similarities as well as more nuanced differences. 
RRI is higher for women in Blumenau and Catalonia in 
almost all age ranges, with the exception of younger age 
groups (10–14 in Blumenau and 0–14 in Catalonia as 
shown in Fig.  3d, e). In contrast, in Indianapolis, men 
present a higher prevalence of DDI in the 50–89 age 
range, significantly so for patients aged 50–64, as seen 
in Fig.  3f. Nonetheless, the relative risk of interaction 
reaches higher values for women than for men in all three 
populations. In Catalonia, which presents the most gen-
der-balanced scenario across age groups, women aged 
25–59 face a significantly higher prevalence of DDI in 
comparison to men near or above 20% (RRI ≥ 1.19). Inter-
estingly, when we analyze all 11 years of data for Catalo-
nia, the relative risk for younger women (15 to 59 years) 
is also above 20% with RRI ≥ 1.2 (see Additional file 1: Fig. 
S3e). In fact, when analyzing all 11 years’ worth of data, 
the largest relative risk of DDI for women is observed 
in the 15–29 age range, which correlates with higher 
ethinylestradiol administrations in the years 2012-2018 
(Additional file 1: Fig. S4a and Fig. S5d-e).

In Indianapolis, women aged 15–44 face a prevalence 
of interaction at least 26% higher than men (RRI ≥ 1.26), 
peaking at 20–24 (RRI = 1.76). In Blumenau, women aged 
25–64 face a prevalence of interaction in comparison to 
men near or above 30% (RRI ≥ 1.29), reaching a peak at 
40–44 (RRI = 1.61). In summary, across the three popu-
lations, women between 15 and 49 face a substantially 
higher DDI prevalence than men—the largest relative 
risk is observed in Blumenau for women aged 15–19 
(RRI = 2.05). When compared to the null model, we note 
that the worst-than-random prevalence of interactions 
happens earlier for Catalan women (15–19 age range) 
than for men (20–24) (Additional file 1: Fig. S6). For Blu-
menau and Indianapolis, there is no gender difference 
when comparing to the null model.

Naturally, DDIs can cause different levels of adverse 
events, from mild headaches to patient hospitalization 
due to liver damage complications. Thus, we study the 
gender-associated differences based on the severity of 
the DDI, by tallying the number of women and men in 
each age range while accounting for minor, moderate, 
and major DDIs. DDI severity is extracted from drugs.
com [28] (see the “Methods” section). Results are shown 
in Additional file 1: Fig. S7 and Fig. S8 and indicate that 
moderate DDIs are the most common with increasing 
patient age. In addition, in Indianapolis, the shift in gen-
der-associated prevalence is largely explained by moder-
ate DDIs, more common in women 15–49 years old and 

in men over 50 (Additional file 1: Fig. S7j). An interest-
ing pattern of elevated prevalence in major DDIs in older 
men is also present in both Catalonia and Indianapolis, 
but not Blumenau. In Catalonia, men have a higher prev-
alence of major DDIs in the ages 50–84 (Additional file 1: 
Fig. S7g), while in Indianapolis men have a higher preva-
lence of major DDIs in ages 45–84 (Additional file 1: Fig. 
S7k). Since drugs.com is tailored to a US audience, drugs 
administered in other countries and their associated 
interactions may not be included in the site. The differ-
ences in the prevalence of these DDI are very similar in 
the three populations, being higher for women in Blume-
nau, and for men in Catalonia and Indianapolis.

Drug interaction networks
To better characterize the DDI phenomenon in each of 
the three populations, we build drug–drug interaction 
networks shown in Fig.  4 and Additional file  1: Fig. S9, 
Fig. S10, and Fig. S11.

Nodes are colored based on their drugs.com category 
and sized based on the probability that patients pre-
scribed the drug will experience a DDI. Edge width rep-
resents the strength of drug interaction and edge color 
denotes the gender-associated relative risk of a DDI, with 
red (blue) denoting higher prevalence in women (men). 
An interactive version of these networks can be explored 
at http:// disea se- perce ption. bsc. es/ ddint eract/.

These networks help us not only visualize which drugs 
are most involved in interactions but also identify pairs 
with the same gender-associated differences (edge color) 
in all populations. For instance, considering the 149 DDIs 
common to all three populations, 56% are associated with 
increased prevalence in the same gender (56 DDIs for 
women, 27 for men). In addition, the network representa-
tion facilitates inferences for specific drugs or categories. 
For instance, drug interactions involving fluconazole, 
contraceptives, or benzodiazepines are more prevalent in 
women, while most interactions involving anticoagulants 
(such as warfarin interacting with phenytoin, prednisone, 
amiodarone, etc.) are more prevalent in men.

Conversely, there are drug pairs where the gender-
associated difference is reversed in at least one popula-
tion, with Blumenau presenting the highest discordance: 
27 pairs. Interestingly, 11 of these 27 discordant interac-
tions are major DDIs, including the concomitant use of 
ASA (anticoagulant) and ibuprofen (anti-inflammatory), 
a combination that reduces the effectiveness of aspirin 
in preventing stroke and increases the risk of developing 
gastrointestinal ulcers (Additional file 1: Table S7).

Drug interactions driving gender‑associated differences
Among the shared drug interactions in all three popu-
lations (149), we observe a strong association between 

http://disease-perception.bsc.es/ddinteract/
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omeprazole and both clonazepam and diazepam for 
women in Blumenau and Catalonia (see red cells in 
Fig. 5a, b), but not in Indianapolis (see Additional file 1: 
Fig. S12). This is particularly supported by the over-
administration of omeprazole in the two populations 

(Additional file 1: Table S2). Similarly, the prevalence of 
co-administering alendronic acid—used to treat osteo-
porosis—and nonsteroidal anti-inflammatories is higher 
for women, paired with diclofenac in Catalonia and ibu-
profen in both Blumenau and Catalonia. This DDI may 

Fig. 4 Catalonia DDI network. Nodes denote drugs involved in at least one co‑administration known to be a DDI. Only nodes connected via edges 
with a strength of interaction larger than 0.18 are shown for clarity. Node color represents the highest level of primary action class, as retrieved 
from drugs.com. Node sizes are proportional to the probability of patients being affected by a DDI involving the drug (P(Ui

Φ)). Edge weights denote 
the strength of interaction (co‑administration length). Edge colors denote relative risk (RR) for women (red) or men (blue). Color intensity for relative 
risks varies in [1, 5]; that is, values are clipped at 5 for clarity

Fig. 5 Top 20 drug interactions with the highest difference between DDI prevalence in women and men. Colors denote a higher prevalence 
of interactions in women (red) and men (blue). Markers (+ and −) denote significantly higher prevalence of DDI administrations in the respective 
gender after correcting for multiple testing (FDR ≤ 0.05). Note the color scale is different across populations, as the maximum and minimum 
differences in DDI prevalence are different between populations
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result in an increased risk for stomach and intestine irri-
tation. The co-administration of ethinylestradiol (contra-
ceptive) and amoxicillin (antibiotic) is significantly high 
in all three populations. This DDI may result in reduced 
contraceptive effectiveness, thus increasing the risk of 
unwanted pregnancy. Interestingly, the major interac-
tion between ASA and ibuprofen previously observed to 
be associated with a higher prevalence in women in Blu-
menau [10] is conversely associated with a lower preva-
lence in women in the other two populations (Fig. 5 and 
Additional file  1: Fig. S12), suggesting a particularity of 
the Blumenau healthcare system. This result points to 
the existence of cultural or social factors that play a role 
in this gender-associated difference. Another interest-
ing DDI case that may point to social or cultural factors 
is the drug pair lidocaine–carvedilol, that only presents 
a higher prevalence in men in Indianapolis (Additional 
file 1: Fig. S12).

Looking further at the DDIs with high gender- and 
age-associated prevalence in each population (Fig.  5), 
we notice in Blumenau a significantly higher prevalence 
of co-administration of fluoxetine (major depression 
treatment) with tramadol (opioid analgesic) or amitrip-
tyline (tricyclic antidepressant) in women. In Catalonia, 
for men over 40  years old, the prevalence of co-admin-
istration of anticoagulants such as ASA and acenocou-
marol either with each other or with anti-diabetic drugs 
(gliclazide and glyburide), allopurinol (gout treatment), 
prednisone (glucocorticoid anti-inflammatory), or anti-
biotics (ciprofloxacin and levofloxacin) is significantly 
higher (Fig.  5b). Lastly, in Indianapolis young women 
present a significantly higher prevalence of co-adminis-
tration of oxytocin, used to induce labor, and phenyle-
phrine, used to increase blood pressure (Fig.  5c). For 
women older than 55 in Indianapolis, there is also a sig-
nificantly higher prevalence of co-administration of levo-
thyroxine, used to treat hypothyroidism, with calcium, 
which can change the absorption levels of levothyroxine. 
Conversely, we also found drug pairs with an increased 
prevalence in men. For instance, the combination of two 
anticoagulants, ASA and heparin; verapamil (a calcium 
channel blocker) and midazolam (benzodiazepine); lido-
caine (a local anesthetic) with metoprolol and carvedilol 
(a beta-blocking agent); and anti-diabetic drugs, such as 
insulin lispro and insulin glargine, with ASA and meto-
prolol, a beta1 receptor blocker used to treat high blood 
pressure that can increase the risk of hypoglycemia. Spe-
cific interacting pairs can be visualized at http:// disea se- 
perce ption. bsc. es/ ddint eract/.

Alternative drug treatments to avoid DDIs
While the observed DDIs involving omeprazole and 
either clonazepam or diazepam are mostly irrelevant 

in Indianapolis (administered to 256 and 135 patients, 
respectively), they are the most co-administered 
drug pairs in Blumenau (5,076, 998) and Catalonia 
(47,811, 253,473). Here, we analyze the preferential 
co-administration of omeprazole over alternative pro-
ton-pump inhibitors (PPI) that have no known drug 
interaction with benzodiazepines in Catalonia (see the 
“Methods” section). Catalonia presents a significant pref-
erential co-administration of omeprazole with diazepam 
or clonazepam, as compared to other PPI as a group (i.e., 
esomeprazole, pantoprazole, rabeprazole, and lansopra-
zole) (OR = 17.6 and 12.2, respectively) or individually 
(Additional file 1: Table S8). Conversely, in Indianapolis, 
there is a significant preferential administration of alter-
native PPI in combination with diazepam or clonazepam 
(OR = 38.3 and 13.5). Importantly, alternative PPI are 
available for administration in Catalonia, which is not the 
case for the public healthcare system of Blumenau where 
they can only be purchased from private pharmacies. 
Indeed, 12 of the 16 (75%) drugs associated with omepra-
zole interactions can be avoided using an alternative PPI.

Based on this observation, we first simulate for Cata-
lonia the population-level effect of removing the ome-
prazole-associated interactions from the overall DDI 
prevalence. In this simulation, we replace omeprazole 
with currently available alternative PPI and recalculate 
the DDI prevalence. We find that administering alter-
native PPI reduces the overall levels of DDI in Catalo-
nia by 23.28% in women and 20.09% in men (Additional 
file  1: Fig. S13b). The majority of these avoidable ome-
prazole interactions are generating moderate adverse 
effects (Additional file 1: Fig. S14b,e), which affect 18.85% 
(12.31%) of men (women) and can be avoided in 34.82% 
and 32.9% of the patients. For Indianapolis, the same 
simulation only reduces overall DDI levels by 2.55% in 
men and 2.56% in women (Additional file  1: Fig. S13c). 
Though no omeprazole substitutes are available free of 
charge in Blumenau, we followed the same simulation 
procedure using the alternatives available in Catalonia. 
Interestingly, the percentages of preventable interactions 
are almost identical to those in Catalonia, 23.19% for 
women and 19.51% for men (Additional file 1: Fig. S13a).

Discussion
This is the first study to analyze DDI administration pat-
terns in three large populations with distinct healthcare 
systems. We analyzed the medication administration 
records of nearly six million patients from up to 11 years 
of data. Despite different study periods and data resolu-
tions for each population, similar patterns were revealed. 
The prevalence of drug co-administrations and inter-
actions by age are both similar for the three popula-
tions (Fig. 2a, b). This shows that the DDI phenomenon 

http://disease-perception.bsc.es/ddinteract/
http://disease-perception.bsc.es/ddinteract/
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is a public health burden in developed and developing 
nations regardless of access to medication or the type 
of healthcare system. Despite this, there are differences 
between the three populations that may be due to alter-
native factors. One is the well-documented differences 
in how computerized clinical decision systems display 
DDI alerts (passive or active) [35] or their ability to iden-
tify potential DDI (only 5% of the DDI alerts were com-
mon to the set of evaluated systems [36]) depending on 
the algorithms used [37]. The high variability in detect-
ing DDI could mean that a specific drug pair may or may 
not be discouraged depending on the system used in each 
population.

Additionally, how patient care is organized directly 
impacts the prevalence of DDI, where continuity of care 
can significantly reduce the risk of DDI [38]. Alterna-
tively, some discrepancies may be due to the type of 
healthcare system (public (Blumenau), public with co-
payment (Catalonia), or private (Indianapolis)), or the 
availability of a primary care physician that could provide 
comprehensive care and increase attention to potential 
DDI. However, since our data does not include variables 
that would allow us to control explicitly for such fac-
tors, without more direct observational studies, we can 
only speculate about the roles of such factors in the DDI 
phenomenon. Notably, the lower prevalence of DDI in 
Catalonia and Indianapolis compared to Blumenau when 
considering the same period (18  months) may be par-
tially because the former two populations have a greater 
number of drugs available (674 and 1088 for Catalonia 
and Indianapolis, respectively), some of which could be 
used to avoid DDI. However, it is essential to highlight 
that although there are several factors that may promote 
differences among the populations studied, in general 
terms, the three populations present substantially similar 
co-administration patterns.

Our statistical null model, designed to account for 
polypharmacy while preserving the same number of pre-
scribed drugs and co-administrations per age, shows that 
the much higher prevalence of DDI in older age (in all 
populations) is not solely explained by the higher preva-
lence of co-administration in those age groups. Indeed, 
this worrisome result previously observed in Blumenau 
[10] is here shown to be even worse in Catalonia, where 
patients have a worse-than-random prevalence of DDI 
starting early in their twenties—reaching 2.7-fold higher-
than-random prevalence for 55- to 59-year-olds (Fig. 2d). 
This worse-than-random prevalence of DDI remains 
even when separating men and women populations 
(Additional file  1: Fig. S6), questioning multimorbidity 
treatments and its current focus on geriatric patients.

Also similarly observed in all populations is a higher 
prevalence in women of both drug co-administration 

and interactions in comparison to men. The general 
prevalence of co-administration in women increases 
as they age. However, the largest difference from men 
occurs during peak reproductive age (age ranges 15–29; 
see Fig.  3 and Additional file  1: Fig. S3), which may be 
explained by women’s greater use of the healthcare sys-
tems during these years [39]. On the other hand, the 
gender imbalance in prevalence is generally much higher 
for interactions than for co-administrations (Additional 
file 1: Fig. S15). There are possible explanations as to why 
women have a generally higher prevalence of DDI. For 
instance, some drugs are women-specific, such as hor-
mones and contraceptive drugs. Thus, women-specific 
drugs may partially explain the higher prevalence of 
DDI observed, particularly in younger women. The DDI 
pair ethinylestradiol and amoxicillin were jointly given 
to 0.98% of Catalan women but only to 0.0008% of men. 
In Blumenau, this same drug pair was given to 0.6% of 
women and no men. Unfortunately, we cannot infer from 
our data whether prescribers informed the patients of 
this DDI and the potential need for additional contracep-
tive methods during co-administration.

Additional reasons for the generally observed higher 
prevalence in women come from the fact that some 
diseases are more likely to affect women. For instance, 
osteoporosis is a skeletal disorder characterized by 
compromised bone strength [40] and is known to be 
diagnosed more frequently in women [41]. This gender-
associated prevalence is observed in our data for the 
populations with disease diagnoses (Catalonia and Indi-
anapolis, Additional file  1: Fig. S16). Bisphosphonates, 
such as alendronic acid, are used to treat osteoporosis, 
and, as a consequence, the prevalence of DDI related to 
alendronic acid is higher for women, especially those over 
50. For instance, the RRI in women aged 60–64 between 
this drug and Ibuprofen is 1.8 and 1.34 in Catalonia and 
Blumenau, respectively. For men of the same age, this RRI 
is only 0.1 and 0.22 in both populations (Additional file 1: 
Table S9). The same can be seen in Indianapolis, albeit at 
a smaller scale. The RRI for alendronic acid and ibupro-
fen is only 0.04 for women in Indianapolis in the same 
60–64 age range, and virtually no men administered this 
DDI in Indianapolis (Additional file  1: Table  S9). This 
smaller RRI for Indianapolis is further supported by the 
comparatively small administration of alendronic acid 
(0.5% compared to 3.5% and 1.7%, see Additional file  1: 
Table S10), which likely stems from the decreased use of 
bisphosphonates in the US after the 2010 FDA bisphos-
phonate drug safety communication [42].

A deviation from the general trend of increased DDI 
prevalence in women is particularly noteworthy. In 
Indianapolis, men over 50 years of age do have a higher 
prevalence of DDI than women. Two factors drive this 
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difference. First is the less frequent use of omeprazole 
in combination with benzodiazepines (widely used by 
women in the other two populations and correlated 
with significantly higher odds there (Additional file  1: 
Table  S1)). Indeed, when we remove the omeprazole 
administration in Catalonia from our analysis (see the 
“Methods” section), men over 60 also show a higher 
prevalence of DDI than women (Additional file  1: Fig. 
S17). Second is the administration of some particular 
DDI that are given significantly more to men in Indi-
anapolis, such as verapamil–midazolam, metoprolol–
lidocaine, and lidocaine–carvedilol (see Fig.  5c). These 
observations highlight how our study also reveals specific 
gender-related differences in the DDI phenomenon for 
each population. With the tools we provide for further 
analysis, other researchers interested in this problem can 
further study and characterize specific DDIs of interest.

Another facet of the complex DDI phenomenon is 
patient multimorbidity. The proportion of patients with 
multimorbidities increases substantially with age, with 
almost 80% of the people suffering from at least two 
morbidities at the age of 65 [43]. As classical treatments 
are disease-independent, patients with multimorbidities 
are particularly at increased risk for DDI. For instance, 
patients with type 2 diabetes are known to be at higher 
risk for cardiovascular diseases and thrombotic com-
plications [44]. Antidiabetic drugs such as glyburide, 
gliclazide, insulin lispro, and insulin glargine are often 
combined with NSAIDs such as ASA and anticoagulants 
such as acenocoumarol (the last being dispensed only 
in our Catalonia data) to treat both conditions, which 
increases the risk of hypoglycemia. Our work highlights 
that these are among the top 10 DDIs ranked by the 
number of patients they affect in all three populations. 
In addition, several of these drugs are usually co-admin-
istered for long periods, as characterized by our strength 
of interaction measure (Additional file 1: Table S1). Also 
related to anticoagulants, gout (an inflammatory disease 
characterized by elevated uric acid levels) increases the 
risk of thrombosis [45]. As a potential consequence, we 
find a higher-than-expected chance of concomitantly 
prescribing allopurinol with warfarin (Additional file  1: 
Table S11), a DDI that increases the risk of bleeding due 
to the potentiation of the anticoagulant effect [46]. Inter-
estingly, the incidence of type 2 diabetes and gout are 
higher for men over 50 in Catalonia (Additional file  1: 
Fig. S16) and can potentially explain the higher adminis-
tration of the DDIs mentioned above.

An essential aspect of our study is to exemplify how 
our large-scale study of the DDI phenomenon can lead 
to actionable interventions for public health benefit. For 
that purpose, we studied the role of the proton pump 
inhibitor (PPI) omeprazole on the observed DDIs in the 

three populations. PPI are the leading therapy for upper 
gastrointestinal disorders and prevention of gastric ulcers 
associated with the use of non-steroidal anti-inflamma-
tories [47]. However, there is substantial evidence for 
inappropriate over-prescription of PPI, particularly of 
omeprazole [48–50]. For instance, in 2008, it was esti-
mated that 100 million pounds from the National Health 
Service budget, and almost 2 billion pounds worldwide, 
were being spent unnecessarily on PPI [49]. Four-fifths 
of all PPI administrations in the UK were associated with 
omeprazole.

The lack of awareness, overuse, and misuse of PPI, 
together with the elevated number of drug interactions 
associated with omeprazole (phenytoin, methotrexate, 
and several benzodiazepine derivatives, among others), 
makes omeprazole one of the most significant culprits 
of DDIs. Indeed, in our study, omeprazole is the third 
and fourth most dispensed drug in Blumenau and Cata-
lonia, respectively. Conversely, in Indianapolis, it is the 
44th. Therefore, we simulated the substitution of ome-
prazole with alternative PPI—such as pantoprazole and 
lansoprazole––as a possible but actionable public health 
intervention. Such an intervention would reduce 20% 
of all men and 23% of all women currently administer-
ing a DDI in Catalonia (Additional file 1: Fig. S13b). This 
means 156,210 women and 92,533 men would be DDI-
free in Catalonia if another PPI substituted their omepra-
zole prescription.

In contrast, extending the simulation to Indianapolis 
results in a much smaller reduction of DDI prevalence 
(only 2.5% fewer patients would not have been adminis-
tered a DDI; see Additional file 1: Fig. S13c). This shows 
that in Indianapolis, the availability of PPI alternatives 
is being utilized to avoid known DDIs or ADRs involv-
ing this drug. Thus, as actionable interventions, our study 
suggests that Catalonia should encourage prescribing 
available PPI alternatives.

Given that a significant percentage of hospitalizations 
are due to drug–drug interactions, with ranges from 1.1 
to 7.7% [4] depending on the type of study—prospective 
vs. retrospective—or the source of information and pop-
ulation analyzed, it is crucial to reduce DDI prevalence 
in the population. Special attention should be paid to 
the co-administration of major interactions, which have 
a prevalence between 3.06 and 5.34% in the populations 
analyzed. Indeed, the ASA-NSAIDs and digoxin–ami-
odarone co-administrations are among the DDI most fre-
quently associated with hospital admissions and visits [4]. 
A study of adverse effects due to a DDI in France revealed 
that antithrombotic agents and antidepressants are the 
drugs most frequently implicated in ADRs resulting from 
a DDI (34% and 5%, respectively) [51]. Other studies have 
shown that DDIs involving drugs that reduce potassium 
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levels (diuretics), centrally acting drugs (psychotrop-
ics), potassium-sparing drugs (angiotensin-converting 
enzyme), and antithrombotic agents comprised 80% of 
all potentially clinically significant DDIs [52]. All these 
drugs are in the top 100 most frequently co-administered 
DDIs in our study and can be retrieved from http:// disea 
se- perce ption. bsc. es/ ddint eract/. To better understand 
which drug co-administrations lead to a higher risk of 
hospitalization, and the magnitude of this risk, it would 
be essential in the future to jointly analyze diagnoses and 
treatments. Since adverse effects generated by DDI are 
recorded in hospitals, this analysis will require the inte-
gration of data from hospitals and emergency rooms. In 
addition, in-situ studies focusing on the under-reporting 
of DDI—a very common phenomenon at different levels 
of healthcare [53–56]—should be included.

It is essential to note that DDI is not the only medica-
tion-related problem that can be prevented. For example, 
drugs used to treat a specific disease might negatively 
impact a comorbid condition, what is known as drug-dis-
ease interaction. Compared to drug–drug interactions, it 
has been reported that 16% of elderly patients in commu-
nity dwellings suffer drug-disease interactions, compared 
to 25% of them taking interacting drugs [57]. These per-
centages rise to up to 64% of the patients in the primary-
care setting [58], and 14% of the prescriptions generate 
alerts in clinical decision support systems [59]. As in the 
case of drug–drug interactions, the risk of disease-drug 
interactions also increases with age due to the increase 
in the number of co-occurring diseases and the number 
of drugs prescribed. For this reason, future work should 
focus on the joint study of disease diagnoses and drug 
administrations to measure the prevalence and impact 
of drug-disease interactions. Another medication-related 
problem is dosage problems, the most common type of 
medication error in pediatric patients [60] that should be 
analyzed in future works.

Some limitations of our study are warranted. First, we 
assume that the drugs dispensed were administered for 
their complete treatment length. In reality, patients may 
stop administration mid-treatment, and prescribers may 
substitute drugs for patients with complaints of adverse 
effects. Also, adverse drug reactions may, in some cases, 
be avoided by separating drug intake during the day (as 
is the case for levothyroxine and calcium [61], whose 
interaction could be avoided by separating the intake 
approximately 4 h) or adjusting dosage, constraining co-
administration length or having the patient closely moni-
tored depending on the context of the co-administration 
[62]. Thus, our results should be seen as a worst-case 
scenario for the administration of known DDIs. None-
theless, since many still unknown DDIs certainly exist 
and our analysis only covers DDIs known in 2011 (see 

the “Methods” section), the true importance of the DDI 
phenomenon is likely larger than what we observed. In 
addition, the relatively short study periods for Blumenau 
and Indianapolis compared to Catalonia may mask shifts 
in drug availability policy. This certainly highlights the 
importance of pursuing future studies with longer peri-
ods of observation as data becomes available. In addition, 
ICD codes may sometimes not perfectly correspond to 
the diagnosis documented by physicians, and there may 
be slight variations in the prevalence of certain diseases. 
Despite this, ICD-10 have been used in a multitude of 
published articles focused on analyzing comorbidity rela-
tionships [63–66], including the ones analyzed here for 
Catalonia [67–69].

Finally, it is necessary to consider that, since the num-
ber of therapeutic targets is limited [70], sometimes there 
may not be an alternative to avoid drug interaction. For 
example, patients with heart failure take furosemide 
and digoxin, one of the significantly co-administered 
drug–drug interactions in all 3 study populations (Addi-
tional file 1: Table S11), the intake of which significantly 
increases the risk of hospitalization for digoxin intoxica-
tion [30]. Unfortunately, on many occasions, both drugs 
have to be co-administered to patients with heart failure, 
as they are used to treat different aspects of the disease: 
furosemide (and diuretics in general) is recommended 
for patients with symptomatic heart failure to con-
trol pulmonary congestion and peripheral edema, and 
digoxin is taken to enhance cardiac contractility, improve 
baroreceptor function, and decrease sympathetic tone. 
It is important to make a risk/benefit balance, as in the 
case of combined antiplatelet and anticoagulant therapy. 
For example, the combination of both types of drugs has 
been shown to provide additional benefits over the use of 
anticoagulants alone in patients with some diseases such 
as prosthetic heart valves [71]. Similarly, the combination 
of heparin and aspirin during the course of pregnancy 
can increase the birth rate in women with antiphospho-
lipid antibodies [72], demonstrating that the context in 
which both drugs are given is important.

Conclusions
Our large-scale epidemiological analysis shows that DDIs 
are indeed a problem that affects a substantial propor-
tion of patients in the three distinct populations studied. 
Ours is the first study to compare the DDI phenomenon 
in three large and distinct public and private healthcare 
systems and follow close to 6 million patients for over 
a decade. Because we studied very diverse populations 
and health systems, from developing to developed coun-
tries, our results are likely generalizable to other nations 
where access to EHR data is still difficult or non-existent. 
Of particular importance is that similar gender and age 

http://disease-perception.bsc.es/ddinteract/
http://disease-perception.bsc.es/ddinteract/
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differences exist in the administration of known DDIs 
in all observed public health systems, albeit with some 
context-specific differences we also characterize. Thus, 
physicians, drug developers, and healthcare profession-
als should be aware that the existence of gender and age 
differences need to be taken into consideration in drug 
management. The analysis, results, and tools we provide 
can be used by others to investigate additional actionable 
interventions. Indeed, our study emphasizes that much 
more attention should be put into understanding and 
reducing the DDI phenomenon and its biases. Because 
interactions between cultural, economic, and biologi-
cal factors are likely at play, in addition to computational 
and epidemiological studies such as ours, the DDI phe-
nomenon calls for greater interdisciplinary collabora-
tion. We hope that by uncovering such a large footprint 
of the DDI phenomenon, with the burden it represents 
to patients and healthcare systems alike, we also contrib-
ute to awareness of the need to accelerate disruptive drug 
research toward new and safer therapeutic targets, par-
ticularly for chronic conditions.
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